Monthly Archives: January 2013

Free, interactive MRI courses from Imaios.com (plus lots of other medical/anatomy material too)

A very quick post to point you towards a really fantastic set of online, interactive courses on MRI from a website called Imaios.com – a very nice, very slick set of material. The MRI courses are all free, but you’ll need to register to see the animations. Lots of other medical/anatomy-related courses on the site too – some free, some ‘premium’, and some nice looking mobile apps too.

iPad app in development to help with macular degeneration

CachedImageI’ve written before about iPad apps useful for vision research, but I’ve just come across a new vision-related app, so new in fact that it’s still in the development/testing phase. It’s been produced by my old Colleague Prof. Robin Walker at Royal Holloway University and is designed as a rehabilitative tool for people with Macular Degeneration (MD).

Age-related MD is by far the most common form of blindness/vision-loss in people over 50, and involves degeneration of the visual sensitivity of the centre portion of the retina – the part of the eye which has the highest density of rods and cones. This makes tasks such as reading and recognising faces more and more difficult as the condition progresses. One way of mitigating the effects is to try and use portions of the retina which are less affected, i.e. the periphery. For reading, the ‘eccentric-vision’ and ‘steady-eye’ techniques involve fixating at a point and then moving the text through areas of the visual field which are less affected. These techniques require some practice to counteract the natural tendency to make eye-movements when reading, and it’s this training process that the app is intended to help with.

Read more about the app here, and there’s also a (pay-walled) article in the British Journal of Opthalmology here.

Whither forensic psychology software?

Good nutrition's given you some length of bone.

Good nutrition’s given you some length of bone.

Forensic and criminal psychology are somewhat odd disciplines; they sit at the cross-roads between abnormal psychology, law, criminology, and sociology.  Students seem to love forensic psychology courses, and the number of books, movies, and TV shows which feature psychologists cooperating with police (usually in some kind of offender-profiling manner) attests to the fascination that  the general public have for it too. Within hours of the Newtown, CT shooting spree last December, ‘expert’ psychologists were being recruited by the news media to deliver soundbites attesting to the probable mental state of the perpetrator. Whether this kind of armchair diagnosis is appropriate or useful (hint: it’s really not), it’s a testament to the acceptance of such ideas within society at large.

Back in the late 80s and early 90s there were two opposing approaches to offender profiling, rather neatly personified by American and British practitioners. A ‘top-down’ (or deductive) approach was developed by the FBI Behavioral Sciences Unit, and involved interviewing convicted offenders, attempting to derive (somewhat subjective) general principles in order to ‘think like a criminal’. By contrast, the British approach (developed principally by David Canter and colleagues) took a much more ‘bottom-up’ (or inductive) approach focused on empirical research, and more precisely quantifiable aspects of criminal behaviour.

Interestingly, the latter approach was ideally suited to standardised analysis methods, and duly spawned a number of computer-based tools. The most prominent among them was a spatial/geographical profiling tool, developed by Canter’s Centre for Investigative Psychology, and named ‘Dragnet’. The idea behind it was relatively simple – that the most likely location of the residence of a perpetrator of a number of similar crimes could be deduced from the locations of the crimes themselves. For example, a burglar doesn’t tend to rob his next-door neighbours, nor does he tend to travel too far from familiar locations to ply his trade – he commits burglaries at a medium distance from home, and generally roughly the same distance. Also general caution might prevent him from returning to the same exact location twice, so an idealised pattern of burglary might include a central point (the perpetrators home) with a number of crime locations forming the points of a circle around it. For an investigator, of course the location of the central point isn’t known a priori, however it can easily be deduced simply by looking at the size and shape of the circle.

geographicprofiling

In practice of course, it’s never this neat, but  modern techniques incorporate various other features (terrain, social geography, etc.) to build statistical models and have met with some success. Ex-police officer Kim Rossmo has been the leading figure in geographic profiling in recent years, and founded the Center for Geospatial Intelligence and Investigation at Texas State university.

Software like this seems like it should be useful, but by and large has failed to deliver on its promises in a major way. At one point it was thought that the future police service would incorporate these tools (and others) routinely in order to solve, and perhaps even predict, crimes. With the sheer amount and richness of data available on the general populace (through online search histories, social networking sites, insurance company/credit card databases, CCTV images, mobile-phone histories, licence-plate-reading traffic cameras, etc. etc.) and on urban environments (e.g. Google maps) that crime-solving software would now be highly developed, and use all these sources of information. However, it seems to have largely stalled in recent years; the Centre for Investigative Psychology’s website has clearly not been updated in several years, and it seems no-one has even bothered producing versions of their software for modern operating systems.

Some others seem to be pursuing similar ideas with more modern methods (e.g. this company), yet still we’re nowhere near any kind of system like the (fictional) one portrayed in the TV series ‘Person of Interest‘, which can predict crimes by analysis of CCTV footage and behaviour patterns derived therefrom. Whether or not this will ever be possible, there is certainly relevant data out there, freely accessible to law-enforcement agencies; the issue is building the right kind of data-mining algorithms to make sense of it all – clearly, not a trivial endeavour.

Something that will undoubtedly help, is the fairly recent development of pretty sophisticated facial recognition technology. Crude face-recognition technology is now embedded in most modern digital cameras, can be used as ID-verification (i.e. instead of a passcode) to unlock smartphones, and  is used for ‘tagging’ pictures on websites like Facebook and Flickr. Researchers have been rapidly refining the techniques, including some very impressive methods of generating interpolated high-resolution images from low-quality sources (this paper describes an impressive ‘face hallucination’ method; PDF here). These advancements, while impressive, are essentially a somewhat dry problem in computer vision; there’s no real ‘psychology’ involved here.

'Face hallucination' -  Creating high quality face images from low-resolution inputs, by using algorithms with prior information about typical facial features.

‘Face hallucination’ – Creating high quality face images from low-resolution inputs, by using algorithms with prior information about typical facial features.

One other ‘growth area’ in criminal/legal psychology over the last few years has been in fMRI lie-detection. Two companies (the stupidly-or-maybe-ingeniously-named No Lie MRI, and Cephos) have been aggressively pushing for their lie-detection procedures to be introduced as admissible evidence in US courts. So far they’ve only had minor success, but frankly, it’s only a matter of time. Most serious commentators (e.g. this bunch of imaging heavy-hitters) still strike an extremely cautious tone on such technologies, but they may be fighting a losing battle.

Despite these two very technical areas then, in general, the early promise of a systematic scientific approach to forensic psychology that could be instantiated in formal systems has not been fulfilled. I’m not sure if this is because of a lack of investment, expertise, interest, or just because the problem turned out to be substantively harder to address than people originally supposed. There is an alternative explanation of course – that governments and law enforcement agencies have indeed developed sophisticated software that ties together all the major databases of personal information, integrates it with CCTV and traffic-camera footage, and produces robust models of the behaviour of the general public, both as a whole, and at an individual level. A conspiracy theorist might suppose that if such a system existed, information about it would have to be suppressed, and that’s the likely reason for the apparent lack of development in this area in recent years. Far-fetched? Maybe.

TTFN, and remember – they’re probably (not?) watching you…

 

Links page update

Just posted a fairly major update to my links page, including new sections on Neuropsychological/Cognitive testing, Neuromarketing/research businesses, and Academic conferences and organisations, plus lots of other links added to the existing sections, and occasional sprinkles of extra-bonus-added sarcasm throughout. Yay! Have fun people.